如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且距离为0.8米.已知小汽车车门宽 AO 为1.2米,当车门打开角度 ∠ AOB 为 40 ° 时,车门是否会碰到墙?请说明理由.(参考数据: sin 40 ° ≈ 0 . 64 ; cos 40 ° ≈ 0 . 77 ; tan 40 ° ≈ 0 . 84 )
某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?
在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.
如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.
(1)解方程:3x(x-2)=2(2-x);(2)解不等式组:
如图,在平面直角坐标系xOy中,函数y=ax2+bx+1(a≠0)的图象与x的正半轴交于点A,与x的负半轴交于点B,与y轴交于点C.△PAC中,P(1,﹣1),∠P=90°,PA=PC.(1)求点A的坐标.(2)将△PAC沿AC翻折,若点P的对应点Q恰好落在函数y=ax2+bx+1(a≠0)的图象上,求a与b的值.(3)将△ACO绕点A逆时针旋转90°得到△ADE,在x轴上取一点M,将∠PMD沿PM翻折,若点D的对应点F恰好落在x轴上,求点M的坐标.