如图是小强洗漱时的侧面示意图,洗漱台(矩形 ABCD ) 靠墙摆放,高 AD = 80 cm ,宽 AB = 48 cm ,小强身高 166 cm ,下半身 FG = 100 cm ,洗漱时下半身与地面成 80 ° ( ∠ FGK = 80 ° ) ,身体前倾成 125 ° ( ∠ EFG = 125 ° ) ,脚与洗漱台距离 GC = 15 cm (点 D , C , G , K 在同一直线上).
(1)此时小强头部 E 点与地面 DK 相距多少?
(2)小强希望他的头部 E 恰好在洗漱盆 AB 的中点 O 的正上方,他应向前或后退多少?
( sin 80 ° ≈ 0 . 98 , cos 80 ° ≈ 0 . 17 , 2 ≈ 1 . 41 ,结果精确到 0 . 1 )
先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..
一场特大暴雨造成遂渝高速公路某一路段被严重破坏。为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务。问原计划每天抢修多少米?
如图:抛物线与x 轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C。 ⑴求抛物线的对称轴和点B的坐标; ⑵过点C作CP⊥对称轴于点P,连结BC交对称轴于点D,连结AC、BP,且 ,求抛物线的解析式; ⑶在⑵的条件下,设抛物线的顶点为G,连结BG、CG、求BCG的面积。
在同一平面内有n条直线,任何两条不平行,任何三条不共点。 当n=1时,如图⑴,一条直线将一个平面分成两个部分; 当n=2时,如图⑵,两条直线将一个平面分成四个部分; 则:当n=3时,三条直线将一个平面分成部分; 当n=4时,四条直线将一个平面分成部分; 若n条直线将一个平面分成个部分, n+1条直线将一个平面分成个部分。 试探索、、n之间的关系。
平面直角坐标系中,直线AB交x轴于点A,交y轴于点B且与反比例函数图像分别交于C、D两点,过点C作CMx轴于M,AO=6,BO=3,CM=5。求直线AB的解析式和反比例函数解析式。