如图, AB 是以 BC 为直径的半圆 O 的切线, D 为半圆上一点, AD = AB , AD , BC 的延长线相交于点 E .
(1)求证: AD 是半圆 O 的切线;
(2)连接 CD ,求证: ∠ A = 2 ∠ CDE ;
(3)若 ∠ CDE = 27 ° , OB = 2 ,求 BD ̂ 的长.
如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.
解不等式组,并把解集在数轴上表示出来.
(1)计算:;(2)先简化,再求值:,其中.
如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.
如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)