“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:(1)若全部资金用来购买彩电和洗衣机共100台,则商家可以购买彩电和洗衣机各多少台?(2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算,共有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F, 求证:CE=CF。
化简求值,其中
计算:(1) (2)
如图,已知在等腰直角三角形中,, 平分,与相交于点,延长到,使, (1)求证:; (2)延长交于,且,求证:; (3)在⑵的条件下,若是边的中点,连结与相交于点. 试探索,,之间的数量关系,并证明你的结论.
利用“等积”计算或说理是一种很巧妙的方法, 就是一个面积从两个不同的角度表示。如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长。 解题思路:利用勾股定理易得AB=5利用,可得到CD=2.4 请你利用上述方法解答下面问题: (1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长。 (2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的 任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值