如图,已知反比例函数 y = m x ( m ≠ 0 ) 的图象经过点 ( 1 , 4 ) ,一次函数 y = − x + b 的图象经过反比例函数图象上的点 Q ( − 4 , n ) .
(1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与 x 轴、 y 轴交于 A 、 B 两点,与反比例函数图象的另一个交点为 P 点,连接 OP 、 OQ ,求 ΔOPQ 的面积.
如图15,抛物线与轴交于两点,与轴交于点,连结,若(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由;(3)如图16所示,连结,是线段上(不与、重合)的一个动点.过点 作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
已知:如图14,⊙A与轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交轴于点B(-4,0).(1)求切线BC的解析式;(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标.
已知两个全等的直角三角形纸片、,如图11放置,点、重合,点在上,与交于点.,,.(1)求证:是等腰三角形;(2)若纸片不动,若绕点逆时针旋转.问首次使四边形成为以为底的梯形时,(如图12).旋转角α的度数是 度,并请你求出此时梯形的高.
已知矩形ABCD中,AB=2,AD=4,以AB的垂直平分线为x轴,AB所在的直线为y轴,建立平面直角坐标系(如图13).(1)写出A、B、C、D及AD的中点E的坐标;(2)求以E为顶点、对称轴平行于y轴,并且经过点B、C的抛物线的解析式.
某市种子培育基地用、、三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图8、图9):(1)型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)