如图,为了测得一棵树的高度 AB ,小明在 D 处用高为 1 m 的测角仪 CD ,测得树顶 A 的仰角为 45 ° ,再向树方向前进 10 m ,又测得树顶 A 的仰角为 60 ° ,求这棵树的高度 AB .
如图.ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A、B. (1)求抛物线的解析式; (2)写出x为何值时,函数值小于0.
如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表的方法表示有可能的闯关情况; (2)求出闯关成功的概率.
直线经过点A(1,3),与y轴交于点B,与x轴交于点C. (1)求直线AB的解析式; (2)将直线AB绕点O顺时针旋转900,与x轴交于点D,与y轴交于点E,与直线AB交于点F,求△BDF的面积; (3)过B点作x轴的平行线BG,点M在直线BG上,且到点(1,1)的距离为6,设点N在直线BG上,请你直接写出使得∠AMB+∠ANB = 450的点N的坐标.
某农户计划利用现有的一面墙(现在的墙足够长),建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm(不考虑墙的厚度). (1)若想水池的总容积为36 m3,x应等于多少? (2)若想使水池的总容积V最大,x应为多少?最大容积是多少?
如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知∠B=60°,BD=,AE=3. (1)求⊙O的半径OD; (2)求证:AE是⊙O的切线; (3)求图中阴影部分的面积.