如图, ⊙ O 的半径为 R ,其内接锐角三角形 ABC 中, ∠ A 、 ∠ B 、 ∠ C 所对的边分别是 a 、 b 、 c .
(1)求证: a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R ;
(2)若 ∠ A = 60 ° , ∠ C = 45 ° , BC = 4 3 ,利用(1)的结论求 AB 的长和 sin ∠ B 的值.
先化简再求值,其中x=﹣1.(本题6分)
因式分解或解方程组(每小题5分,共10分) (1) (2)
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△EFP的边FP也在直线上,边EF与边AC重合,且EF=FP。(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP、BQ。猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想。
如图①是一个长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个单位长度匀速运动,到达C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动,在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示。求:(1)AB、BC的长;(2)a,b的值。
如图,已知AD⊥BC于D,BG⊥BC于G,AE=AF,说明AD平分∠BAC,下面是小颖的解答过程,请补充完整。解:∵AD⊥BC,BG⊥BC(已知)∴∠4=∠5=90°(垂直定义)∴__________∥____________( )∴∠2=_______________( )∠1=_____________( )又∵AE=AF(已知)∴∠3=_____________( )∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线定义)