在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
(1)本次调查的样本容量是 ,这组数据的众数为 元;
(2)求这组数据的平均数;
(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.
已知:如图,在▱ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E. (1)说明△DCE≌△FBE的理由; (2)若EC=3,求AD的长.
解方程:
已知x=,求代数式的值.
如图,在平面直角坐标系中,抛物线与轴交于点C,与轴交于点A(,0),B(,0). (1)求抛物线的解析式; (2)在第三象限的抛物线上有一动点D. ①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由. ②如图(2),直线与抛物线交于点Q、C两点,过点D作直线DF⊥轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为?若存在,请求出点D的坐标;若不存在,请说明理由.
在菱形ABCD中,∠BAD是锐角,AC,BD相交于点O,E是BD的延长线上一动点(不与点D重合),连接EC并延长和AB的延长线交于点F,连接AE. (1)比较∠F和∠ABD的大小,并说明理由; (2)当△BFC有一个内角是直角时,求证:△BFC∽△EFA; (3)当△BFC与△EFA相似(两三角形的公共角为对应角),且AC=12,DE=5时,求△BFC与△EFA的相似比.