如图,在 Rt Δ ABC 中, ∠ C = 90 ° , BE 平分 ∠ ABC 交 AC 于点 E ,作 ED ⊥ EB 交 AB 于点 D , ⊙ O 是 ΔBED 的外接圆.
(1)求证: AC 是 ⊙ O 的切线;
(2)已知 ⊙ O 的半径为2.5, BE = 4 ,求 BC , AD 的长.
解下列一元二次方程: (1) (2)
化简:(≥0,≥0)
如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F. (1)若抛物线过点A、B、C, 求此抛物线的解析式; (2)求△OAE与△ODC重叠的部分四边形ODFE的面积; (3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.
如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2). (1)求y关于x的函数关系式,并写出x的取值范围; (2)求△PBQ的面积的最大值.
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D. (1)求证:PD是⊙O的切线; (2)若∠CAB=120°,AB=6,求BC的值.