如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.(1)求证:BP是⊙O的切线;(2)求证:AE•EB=DE•EF;(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.
已知:如图,在△中,.⊥于点,且,⊥交的延长线于点.求证:.
解方程:
计算:.
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动. (1)当点B与点G重合时,求此时t的值; (2)直接写出S与t之间的函数关系式和相应的自变量取值范围; (3)当t = 4时,将△EFG绕点E顺时针旋转一个角度(),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.
如图,一次函数分别交y轴、x轴于A、B两点,抛物线过A、B两点,作垂直x轴的直线,交x轴于H,交直线AB于M,交这个抛物线于N. (1)求这个抛物线的解析式; (2)若M在第一象限,求当t取何值时,MN有最大值?最大值是多少? (3)若∠ABO=∠BNH,求t的值.