在小水池旁有一盏路灯,已知支架 AB 的长是 0 . 8 m , A 端到地面的距离 AC 是 4 m ,支架 AB 与灯柱 AC 的夹角为 65 ° .小明在水池的外沿 D 测得支架 B 端的仰角是 45 ° ,在水池的内沿 E 测得支架 A 端的仰角是 50 ° (点 C 、 E 、 D 在同一直线上),求小水池的宽 DE .(结果精确到 0 . 1 m ) ( sin 65 ° ≈ 0 . 9 , cos 65 ° ≈ 0 . 4 , tan 50 ° ≈ 1 . 2 )
为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:级:非常满意;级:满意;级:基本满意;级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是 .
(2)图1中,的度数是 ,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为,,,,中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.
如图,在四边形中,,点是对角线的中点,过点作的垂线,分别交、于点、,连接、.试判断四边形的形状,并证明.
先化简,再求值:,其中.
如图,已知抛物线 y = - x 2 + bx + c 与 x 轴交于 A 、 B 两点, AB = 4 ,交 y 轴于点 C ,对称轴是直线 x = 1 .
(1)求抛物线的解析式及点 C 的坐标;
(2)连接 BC , E 是线段 OC 上一点, E 关于直线 x = 1 的对称点 F 正好落在 BC 上,求点 F 的坐标;
(3)动点 M 从点 O 出发,以每秒2个单位长度的速度向点 B 运动,过 M 作 x 轴的垂线交抛物线于点 N ,交线段 BC 于点 Q .设运动时间为 t ( t > 0 ) 秒.
①若 ΔAOC 与 ΔBMN 相似,请直接写出 t 的值;
② ΔBOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.
"互联网 + "时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为 x 元 ( x 为正整数),每月的销售量为 y 条.
(1)直接写出 y 与 x 的函数关系式;
(2)设该网店每月获得的利润为 w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?