为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
请根据以上两图解答下列问题:
(1)该班总人数是 ;
(2)根据计算,请你补全两个统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
定义为函数的 “特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}.(1)将“特征数”是的函数图象向上平移2个单位,得到一个新函数,这个函数的解析式是 ;(2)在(1)中,平移前后的两个函数分别与y轴交于O、A两点,与直线分别交于C、B两点,判断以A、B、C、O四点为顶点的四边形形状,并说明理由。(3)若(2)中的四边形(不包括边界)始终覆盖着“特征数”是的函数图象的一部分,求满足条件的实数b的取值范围?
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.(1)求tan∠FOB的值;(2)用含t的代数式表示△OAB的面积S;
、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.(1)求关于的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过 程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.并在图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan400=0.84,sin400=0.64,cos400=)
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=上的概率.