“五 · 一”期间,小亮与家人到某旅游风景区登山,他们沿着坡度为 5 : 12 的山坡 AB 向上走了1300米,到达缆车站 B 处,乘坐缆车到达山顶 C 处,已知点 A 、 B 、 C 、 D 在同一平面内,从山脚 A 处看山顶 C 处的仰角为 30 ° ,缆车行驶路线 BC 与水平面的夹角为 60 ° ,求山高 CD .(结果精确到1米, 3 ≈ 1 . 732 , 2 ≈ 1 . 414 )
(注 : 坡度是指坡面的铅直高度与水平宽度的比)
海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)
计算:; (2))解不等式组,并写出它的非负整数解.
为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图: 由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()
如图,抛物线y=a(x﹣1)2+b经过A(4,0)和B(0,4)两点. (1)求a、b的值,并写出抛物线的解析式; (2)记抛物线的顶点为C,求△ABC的面积; (3)M是抛物线上的一个动点,且位于笫一象限内.设△ABM的面积为S,试求S的最大值.
一块矩形塑料板ABCD,AD=10,AB=4.将一块足够大的直角三角板PHF的直角顶点P置于AD边上(不于A、D 重合,任意移动P点和三角板PHF的位置,如图(1). (1)△PEF是否存在这样的位置,使两边直角边分别通过B、C两点?如图(2),若存在,请求出AP的长度,若不存在,请说理由. (2)PH始终通过B点时,PF交BC于E点,交DC的延长线于Q点,△PHF是否存在这样的位置,使得CE=2?若能请求出这时AP的长度;若不能,请说明理由.