求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的 ΔABC 及线段 A ' B ' , ∠ A ' ( ∠ A ' = ∠ A ) ,以线段 A ' B ' 为一边,在给出的图形上用尺规作出△ A ' B ' C ' ,使得△ A ' B ' C ' ∽ ΔABC ,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
如图, ΔABC 中, ∠ ACB > ∠ ABC .
(1)用直尺和圆规在 ∠ ACB 的内部作射线 CM ,使 ∠ ACM = ∠ ABC (不要求写作法,保留作图痕迹);
(2)若(1)中的射线 CM 交 AB 于点 D , AB = 9 , AC = 6 ,求 AD 的长.
“直角”在初中几何学习中无处不在.
如图,已知 ∠ AOB ,请仿照小丽的方式,再用两种不同的方法判断 ∠ AOB 是否为直角(仅限用直尺和圆规).
如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).
在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).
(1)以(0,0)为圆心,3为半径画圆;
(2)以(0,﹣1)为圆心,1为半径向下画半圆;
(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;
(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.
(向上、向下指在经过圆心的水平线的上方和下方)
小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.
(1)请你在图1中画出一种分法(无需尺规作图);
(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)