如图, ΔABC 内接于 ⊙ O , AD 与 BC 是 ⊙ O 的直径,延长线段 AC 至点 G ,使 AG = AD ,连接 DG 交 ⊙ O 于点 E , EF / / AB 交 AG 于点 F .
(1)求证: EF 与 ⊙ O 相切.
(2)若 EF = 2 3 , AC = 4 ,求扇形 OAC 的面积.
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC, (1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)。 (2)证明:DC⊥BE。
一次函数y=kx+b的图像经过点(0,-4)且与正比例函数y=kx的图象交于点(2,-1). (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积; (3)直接写出不等式kx-4≥kx的解集。
已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,求证:AB=CD。
分解因式:(1)n(m-2)-n(2-m);(2)2a-4ab+2ab;
先化简再求值:4(m+1)2-(2m+5)(2m-5),其中m=-3。