如图,AE是∠BAC的平分线,AB=AC。⑴若点D是AE上任意一点,则△ABD≌△ACD;⑵若点D是AE反向延长线上一点,结论还成立吗?试说明你的猜想。
在Rt△中,,为上一点,AC=5,AB=13,BD =8, 求线段AD的长度。
已知一个正数的平方根是a-3与2a-9,求这个正数的值。
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B. (1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ.求的大小; (2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长.
不透明的口袋里装有红、黄、蓝三种颜色的小球(其它一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为. ⑴.求袋中黄球的个数; ⑵.第一次摸出一个球(不放回).第二次再摸出一个球,请用树形图或列表法求两次摸出的都是红球的概率。
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。 (1)求证:AD=DC (2)求证:DE是的切线 (3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。