如图,在某街道路边有相距 10 m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面 A 处测得路灯 PQ 的顶端仰角为 14 ° ,向前行走 25 m 到达 B 处,在地面测得路灯 MN 的顶端仰角为 24 . 3 ° ,已知点 A , B , Q , N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到 0 . 1 m .参考数据: sin 14 ° ≈ 0 . 24 , cos 14 ° ≈ 0 . 97 , tan 14 ° ≈ 0 . 25 , sin 24 . 3 ° ≈ 0 . 41 , cos 24 . 3 ° ≈ 0 . 91 , tan 24 . 3 ° ≈ 0 . 45 )
如图,正比例函数的图象与反比例函数()的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量的取值范围.
如图,抛物线与轴交于点A(-1,0)、B(3,0),与轴交于点C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为 时,四边形FQAC是平行四边形;当点F的坐标为 时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).
如图,AB是⊙O的直径,直线EF切⊙O于点C,AD⊥EF于点D.(1)求证:AC平分∠BAD;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留)
已知:ABCD的两边AB、AD的长是关于的方程的两个实数根.(1)当为何值时,ABCD是菱形?求出这时菱形的边长;(2)若AB=2,那么ABCD的周长是多少?
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).(1)求抛物线的解析式;(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.