如图,某地质公园中有两座相邻小山.游客需从左侧小山山脚 E 处乘坐竖直观光电梯上行100米到达山顶 C 处,然后既可以沿水平观光桥步行到景点 P 处,也可以通过滑行索道到达景点 Q 处,在山顶 C 处观测坡底 A 的俯角为 75 ° ,观测 Q 处的俯角为 30 ° ,已知右侧小山的坡角为 30 ° (图中的点 C , E , A , B , P , Q 均在同一平面内,点 A , Q , P 在同一直线上)
(1)求 ∠ CAP 的度数及 CP 的长度;
(2)求 P , Q 两点之间的距离.(结果保留根号)
如图,抛物线y=-x2+bx+c与x轴、y轴分别交于A(-1,0)、B(0,3)两点,顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积(3分)(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
计算:
若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.