如图为某区域部分交通线路图,其中直线 l 1 / / l 2 / / l 3 ,直线 l 与直线 l 1 、 l 2 、 l 3 都垂直,垂足分别为点 A 、点 B 和点 C ,(高速路右侧边缘), l 2 上的点 M 位于点 A 的北偏东 30 ° 方向上,且 BM = 3 千米, l 3 上的点 N 位于点 M 的北偏东 α 方向上,且 cos α = 13 13 , MN = 2 13 千米,点 A 和点 N 是城际线 L 上的两个相邻的站点.
(1)求 l 2 和 l 3 之间的距离;
(2)若城际火车平均时速为150千米 / 小时,求市民小强乘坐城际火车从站点 A 到站点 N 需要多少小时?(结果用分数表示)
如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.
某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数.
有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其他区别.从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字只和是6的概率.
先化简,再求值::,其中a=.
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点. (1)求AD的长及抛物线的解析式; (2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似? (3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.