如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A.D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内。(1)求二次函数的解析式;(2)设点D的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论。
在△ABC中,点D在线段AC上,点E在BC上,且DE∥AB将△CDE绕点C按顺时针方向旋转得到△(使<180°),连接、,设直线与AC交于点O. (1)如图①,当AC=BC时,:的值为______; (2)如图②,当AC=5,BC=4时,求:的值; (3)在(2)的条件下,若∠ACB=60°,且E为BC的中点,求△OAB面积的最小值.
已知关于x的方程(k为常数,且k>0). (1)证明:此方程总有两个不等的实数根、; (2)设此方程的两个实数根为、,若,求k的值.
如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动. (1)请在所给的图中,画出点A在正方形整个翻滚过程中所经过的路线图; (2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S. (3)若把正方形放在直线上,让纸片ABCD按上述方法旋转,请直接写出经过多少次旋转,顶点A经过的路程是.
如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C. (1)求证:直线AE是⊙O的切线; (2)若EB=AB,,AE=24,求EB的长及⊙O的半径.
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD的长。