如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形 ABC (顶点是网格线的交点)
(1)先将 ΔABC 竖直向上平移5个单位,再水平向右平移4个单位得到△ A 1 B 1 C 1 ,请画出△ A 1 B 1 C 1 ;
(2)将△ A 1 B 1 C 1 绕 B 1 点顺时针旋转 90 ° ,得△ A 2 B 1 C 2 ,请画出△ A 2 B 1 C 2 ;
(3)求线段 B 1 C 1 变换到 B 1 C 2 的过程中扫过区域的面积.
(本题6分)已知抛物线经过点A (1,0), B(O,-6). (1)求抛物线的解析式; (2)求此抛物线与坐标轴的三个交点所构成的三角形的面积.
、(本题6分)已知反比例函数的图象与一次函数的图象相交于点(1,5)。(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
(本小题满分14分) 如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)。设抛物线的顶点为D,求解下列问题:(1)求抛物线的解析式和D点的坐标;(2)过点D作DF∥轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由。
.(本小题满分12分) 如图,已知在⊙O中,直径AB=10,点E是OA上任意一点,过E作弦CD⊥AB,点F是弧BC上一点,连结AF交CE于H,连结AC、CF、BF。(1)请你找出图中的相似三角形,并对其中的一对相似三角形进行证明;(2)若AE:BE=1:4,求CD长。(3)在(2)的条件下,求的值。
在矩形ABCD中,AB=4,BC=10,点M在BC上。(1)若BM=3时,求点D到直线AM的距离;(2)若AM⊥DM,求BM的长。