如图1,在直角坐标系中,抛物线:与轴交于点,以为一边向左侧作正方形上;如图2,把正方形绕点顺时针旋转后得到正方形(﹤﹤)﹒(1)、两点的坐标分别为 、 ;(2)当 tan﹦时,抛物线的对称轴上是否存在一点,使△为直角三角形?若存在,请求出所有点的坐标;若不存在,请说明理由.(3)在抛物线的对称轴上是否存在一点,使△为等腰直角三角形?若存在,请直接写出此时tan的值;若不存在,请说明理由﹒
计算:-2+sin260°+cos260°.
如图,已知:⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2-8 与y轴交于点P. (1)试判断PC与⊙D的位置关系. (2)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由。
如图,AB为半圆O的直径,在AB的同侧作AC、BD切半圆O于A、B,CD切半圆O于E,请分别写出两个角相等、两条边相等、两个三角形全等、两个三角形相似等四个正确的结论.
如图,有三边分别为0.4m、0.5m和0.6m的三角形形状的铝皮,问怎样剪出一个面积最大的圆形铝皮?请你设计解决问题的方法.
如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论. (2)若已知AT=4,试求AB的长.