如图,已知抛物线 y = a x 2 + bx + c 的顶点为 A ( 4 , 3 ) ,与 y 轴相交于点 B ( 0 , − 5 ) ,对称轴为直线 l ,点 M 是线段 AB 的中点.
(1)求抛物线的表达式;
(2)写出点 M 的坐标并求直线 AB 的表达式;
(3)设动点 P , Q 分别在抛物线和对称轴 l 上,当以 A , P , Q , M 为顶点的四边形是平行四边形时,求 P , Q 两点的坐标.
为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为 :+2,-3,+2,+1,-2,-1,-2.(单位:千米);(1)此时,这辆城管的汽车司机如何向队长描述他的位置? (2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油 0.2升)
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示. (1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ; (2)乙车休息的时间为 ; (3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ; (4)求行驶多长时间两车相距100km.
观察下列一组等式的化简.然后解答后面的 问题: ; ; … (1)在计算结果中找出规律= (n表示大于0的自然数) (2)通过上述化简过程,可知 (填“>”、“<”或“=”); (3)利用你发现的规律计算下列式子的值:
在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.(1)求这个梯子的顶端距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
已知一次函数y=kx-3的图象与正比例函数y=的图象相交于点(-2,a).(1)求出一次函数解析式.(2)点A(x1,y1),B(x2,y2)都在一次函数图象上,若x1<x2,试比较y1与y2的大小.