九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号
一
二
三
四
五
人数
a
15
20
10
b
已知前面两个小组的人数之比是 1 : 5 .
解答下列问题:
(1) a + b = .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
解下列方程(1)4x²-4x+1=0 (2)(3x+2)²=(5-2x)²
已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在轴上,直角顶点A在轴的正半轴上,A(0,2),B(-1,0)。(1)求点C的坐标并求过A、B、C三点的抛物线的解析式(2)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.;(3)在抛物线的对称轴上是否存在点Q,使△QAC是以AC为腰的等腰三角形?如果存在,直接写出Q点的坐标;如果不存在,请说明理由;
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长,与BC的延长线交于点F,BD=BF.(1)求证:AC是⊙O的切线;(2)若BC=12,AD=8,求的长.
已知一元二次方程的一根为2.(1)求关于的关系式;(2)若,求方程的另一根;(3)求证:抛物线与轴有两个交点.
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.