九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号
一
二
三
四
五
人数
a
15
20
10
b
已知前面两个小组的人数之比是 1 : 5 .
解答下列问题:
(1) a + b = .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
二次函数的图象如图所示,根据图象: (1)求其解析式 (2)观察图像写出>0时的取值范围 (3)是否存在某直线经过A(1,0)并与该抛物线只有一个公共点?若存在,求出该直线的解析式,若不存在,请说明理由
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析, (1)每轮感染中平均一台电脑会感染几台电脑? (2)若该病毒得不到有效控制,第3轮感染后,被感染的电脑会不会超过700台?说明理由
根据条件求函数解析式:(6分× 2 = 12分) (1)已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),求该抛物线的解析式; (2)抛物线经过A(1,4)、B(-1,0)、C(-2,7)三点,求抛物线的解析式.
选择适当的方法解下列方程:(4分× 3 = 12分) (1) (2) (3)
在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点. (1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长; (2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式. (3)以线段BC为直径作圆,圆心为点F, ①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由. ②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.