如图,在平面直角坐标系中, ΔABC 的三个顶点分别为 A ( − 1 , − 2 ) , B ( − 2 , − 4 ) , C ( − 4 , − 1 ) .
(1)把 ΔABC 向上平移3个单位后得到△ A 1 B 1 C 1 ,请画出△ A 1 B 1 C 1 并写出点 B 1 的坐标;
(2)已知点 A 与点 A 2 ( 2 , 1 ) 关于直线 l 成轴对称,请画出直线 l 及 ΔABC 关于直线 l 对称的△ A 2 B 2 C 2 ,并直接写出直线 l 的函数解析式.
为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,二中学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间,根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题: (1)本次调查的学生人数是人. (2)图2中α是度,并将图1条形统计图补充完整. (3)请估算该校九年级学生自主学习的时间不少于1.5小时有人. (4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
如图,已知正比例函数和反比例函数的图象交于点A(m,-2). (1)求反比例函数的解析式; (2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围; (3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上. (1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′; (2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
如图,AB是⊙O的直径,AM、BN分别切⊙O于点A、B,CD交AM,BN于点D、C,DO平分∠ADC. (1)求证:CD是⊙O的切线; (2)若AD=4,BC=9,求⊙O的半径R.
解方程: