如图,随着我市铁路建设进程的加快,现规划从 A 地到 B 地有一条笔直的铁路通过,但在附近的 C 处有一大型油库,现测得油库 C 在 A 地的北偏东 60 ° 方向上,在 B 地的西北方向上, AB 的距离为 250 ( 3 + 1 ) 米.已知在以油库 C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库 C 是否会受到影响?请说明理由.
已知二次函数y=2x2+m. (1)若点(﹣2,y1)与(3,y2)在此二次函数的图象上,则y1 y2(填“>”、“=”或“<”); (2)如图,此二次函数的图象经过点(0,﹣4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作DE⊥AP交AP于E点. (1)求证:DE为⊙O的切线; (2)若DE=3,AC=8,求直径AB的长.
某商店经营一种笔记本,进价为每本5元,据市场分析,在一个月内,售价定为每本8元时.可卖出105本,而售价每上涨1元,就少卖5本. (1)设每本笔记本的售价为x元,一个月的利润为y元,写出y与x之间的函数关系式; (2)当售价定为每本多少元时,一个月的获利最大?最大利润是多少元?
四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张. (1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取到的两张卡片上的数字之积为奇数的概率.
已知抛物线y=x2+bx+c经过(0,﹣1),(3,2)两点.求它的解析式及顶点坐标.