设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为: a ⊕ b b a ( a > 0 ) a - b ( a ≤ 0 ) ,
例如: 1 ⊕ ( - 3 ) = - 3 1 = - 3 , ( - 3 ) ⊕ 2 = ( - 3 ) - 2 = - 5 ,
x 2 + 1 ⊕ ( x - 1 ) = x - 1 x 2 + 1 (因为 x 2 + 1 > 0 )
参照上面材料,解答下列问题:
(1) 2 ⊕ 4 = , (﹣ 2 ) ⊕ 4 = ;
(2)若 x > 1 2 ,且满足 ( 2 x - 1 ) ⊕ ( 4 x 2 - 1 )=(﹣ 4 ) ⊕ ( 1 - 4 x ) ,求x的值.
如图,抛物线与x轴交于A、B两点,与y轴交于点C. (1)分别求出点A、B、C的坐标; (2)设抛物线的顶点为M,求四边形ABMC的面积.
如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且S△DBP=27,. (1)求点D的坐标; (2)求一次函数与反比例函数的表达式; (3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?
关于x的方程, (1)a为何值时,方程的一根为0? (2)a为何值时,两根互为相反数? (3)试证明:无论a取何值,方程的两根不可能互为倒数.
如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2. (1)写出A、B、D三点坐标; (2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标. (3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式
如图,为⊙的直径,与⊙相切于点,与⊙相切于点,点为延长线上一点,且CE=CB. (1)求证:为⊙的切线; (2)若,求线段BC的长.