如图,直线l的解析式为,它与坐标轴分别交于A、B两点,其中B坐标为(0,4).(1)求出A点的坐标;(2)若点 P在y轴上,且到直线l的距离为3,试求点P的坐标;(3)在第一象限的角平分线上是否存在点Q使得∠QBA=90°;若存在,求点Q的坐标,若不存在,请说明理由.(4)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形.
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4; (1)求证:四边形ACED是平行四边形 (2)求四边形ACEB的周长.
如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象. (1)求A、B、C三点的坐标; (2)求△ABC的面积.
已知y与x+2成正比例,且当x=1时,y=﹣6. (1)求y与x的函数关系式. (2)若点(a,2)在此函数图象上,求a的值.
如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且DF=BE. 求证:AE=CF.
如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2). (1)求直线AB的解析式; (2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.