在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:
已知:直线l和l外一点P.
求作:直线l的垂线,使它经过点P.
作法:如图:(1)在直线l上任取两点A、B;
(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;
(3)作直线PQ.
参考以上材料作图的方法,解决以下问题:
(1)以上材料作图的依据是:
(2)已知,直线l和l外一点P,
求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
先化简,再求值: a a 2 - b 2 - 1 a + b ÷ b a 2 - 2 ab + b 2 ,其中 a = ( 1 3 ) ﹣ 1 , b = ( ﹣ 2022 ) 0 .
已知方程组 x + y = 3 ① x - y = 1 ② 的解满足 2 k x ﹣ 3 y < 5 ,求 k 的取值范围.
抛物线 y = x 2 ﹣ 2 x ﹣ 3 交 x 轴于 A , B 两点( A 在 B 的左边), C 是第一象限抛物线上一点,直线 A C 交 y 轴于点 P .
(1)直接写出 A , B 两点的坐标;
(2)如图(1),当 O P = O A 时,在抛物线上存在点 D (异于点 B ),使 B , D 两点到 A C 的距离相等,求出所有满足条件的点 D 的横坐标;
(3)如图(2),直线 B P 交抛物线于另一点 E ,连接 C E 交 y 轴于点 F ,点 C 的横坐标为 m .求 FP OP 的值(用含 m 的式子表示).
【问题提出】
如图(1),在 △ A B C 中, A B = A C , D 是 A C 的中点,延长 B C 至点 E ,使 D E = D B ,延长 E D 交 A B 于点 F ,探究 AF AB 的值.
【问题探究】
(1)先将问题特殊化.如图(2),当 ∠ B A C = 60 ° 时,直接写出 AF AB 的值;
(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
【问题拓展】
如图(3),在 △ A B C 中, A B = A C , D 是 A C 的中点, G 是边 B C 上一点, CG BC = 1 n ( n < 2 ) ,延长 B C 至点 E ,使 D E = D G ,延长 E D 交 A B 于点 F .直接写出 AF AB 的值(用含 n 的式子表示).
在一条笔直的滑道上有黑、白两个小球同向运动,黑球在 A 处开始减速,此时白球在黑球前面 70 c m 处.
小聪测量黑球减速后的运动速度 v (单位: c m / s )、运动距离 y (单位: c m )随运动时间 t (单位: s )变化的数据,整理得下表.
运动时间t/s
0
1
2
3
4
运动速度v/cm/s
10
9 . 5
9
8 . 5
8
运动距离y/cm
9 . 75
19
27 . 75
36
小聪探究发现,黑球的运动速度 v 与运动时间 t 之间成一次函数关系,运动距离 y 与运动时间 t 之间成二次函数关系.
(1)直接写出 v 关于 t 的函数解析式和 y 关于 t 的函数解析式(不要求写出自变量的取值范围);
(2)当黑球减速后运动距离为 64 c m 时,求它此时的运动速度;
(3)若白球一直以 2 c m / s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.