如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG 连结GD,求证△ADG≌△ABE; 如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC上一动点(不含端点B,C ),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变,若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
如图,四边形 ABCD 是平行四边形, DE / / BF ,且分别交对角线 AC 于点 E , F ,连接 BE , DF .
(1)求证: AE = CF ;
(2)若 BE = DE ,求证:四边形 EBFD 为菱形.
先化简,再求值: ( x - 2 ) 2 - 4 x ( x - 1 ) + ( 2 x + 1 ) ( 2 x - 1 ) ,其中 x = - 2 .
计算: ( - 1 ) 2 + | - 2 | + ( π - 3 ) 0 - 4 .
已知点 A ( 1 , 0 ) 是抛物线 y = a x 2 + bx + m ( a , b , m 为常数, a ≠ 0 , m < 0 ) 与 x 轴的一个交点.
(Ⅰ)当 a = 1 , m = - 3 时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与 x 轴的另一个交点为 M ( m , 0 ) ,与 y 轴的交点为 C ,过点 C 作直线 l 平行于 x 轴, E 是直线 l 上的动点, F 是 y 轴上的动点, EF = 2 2 .
①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标;
②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 2 ?
将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, ∠ OAB = 90 ° , ∠ B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O , B 重合).
(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t .
①如图②,若折叠后△ O ' PQ 与 ΔOAB 重叠部分为四边形, O ' P , O ' Q 分别与边 AB 相交于点 C , D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;
②若折叠后△ O ' PQ 与 ΔOAB 重叠部分的面积为 S ,当 1 ⩽ t ⩽ 3 时,求 S 的取值范围(直接写出结果即可).