如图,在Rt△ ACB中,∠ ACB=90°,以点 A为圆心, AC长为半径的圆交 AB于点 D, BA的延长线交⊙ A于点 E,连接 CE, CD, F是⊙ A上一点,点 F与点 C位于 BE两侧,且∠ FAB=∠ ABC,连接 BF.
(1)求证:∠ BCD=∠ BEC;
(2)若 BC=2, BD=1,求 CE的长及sin∠ ABF的值.
解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等. (1)设,,求A与B的积; (2)提出(1)的一个“逆向”问题,并解答这个问题.
先化简:,当y=-1时,再从-2<x<3的范围内选取一个合适的整数x代入求值.
因式分解:(1)m3-4m;(2)
解方程组:(1);(2)
先化简,再求值:,其中x=-1,y=0.5