如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)求证:AC平分 ∠ DAB ;
(2)连接BE交AC于点F,若 cos ∠ CAD = 4 5 ,求 AF FC 的值.
如图(1),把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.定义:如过两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.尺规作图(保留痕迹,不写作法):请在图(2)中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种)
如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是__________;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是.”的说法正确吗?为什么? (3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.
如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.
如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)