某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.
在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式.
快乐公司决定按扇形图给出的比例从甲、乙、丙三个工厂共购买200件同种产品A,已知这三个工厂生产的产品A的优品概率如表所示.
(1)求快乐公司从丙厂应购买多少件产品A; (2)求快乐公司所购买的200件产品A的优品概率; (3)你认为快乐公司能否通过调整从三个工厂所购买的产品A的比例,使所购买的200件产品A的优品概率上升3%?若能,请问应从甲厂购买多少件产品A;若不能,请说明理由.
体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.
某市从2010年开始加快保障房建设进程,现统计了该市2010年到2014年3月新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小明看了统计图后说:“该市2013年新建保障房的套数比2012年少了.”你认为小明说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年每年新建保障房的套数的中位数.