如图,一次函数 y= ax+ b的图象与反比例函数 y= ( x>0)的图象交于点 P( m,4),与 x轴交于点 A(﹣3,0),与 y轴交于点 C, PB⊥ x轴于点 B,且 AC= BC.
(1)求反比例函数与一次函数的解析式;
(2)反比例函数图象上是否存在点 D,使四边形 BCPD为菱形?如果存在,求出点 D的坐标;如果不存在,说明理由.
如图所示在中,是的延长线上一点,与交于点,. (1)求证:∽; (2)若面积为2,求的面积.
已知关于的一元二次方程的一根为2. (1)求关于的关系式; (2)试说明:关于的一元二次方程总有两个不相等的实数根.
“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强.一日本人在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有64人受到感染. (1)问每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?
如图,为原点,、两点坐标分别为、. (1)以为位似中心在轴左侧将放大为原来的两倍,并画出图形; (2)分别写出,两点的对应点, 的坐标; (3)已知点为内部一点,且,点在内的对应点为, 求的长; (4)若点为的内心,则度.
如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l. (1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式; (2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长; (3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .