小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.
已知:如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M. 求证:AM=(AB+AC) 。
已知:如图,Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E, BA、CE延长线相交于F点。求证: (1)△BCF是等腰三角形;(2)BD=2CE。
已知:如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,求BC的长度及∠ECD的度数。
已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,CE与BD相交于点G,GH⊥BC于H. 求证:BH=CH。
已知:如图,△ABC中,AB="AC," D、E在BC边上,且AD=AE,求证:BD=CE