某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:
价格
类型
进价(元/箱)
售价(元/箱)
A
60
70
B
40
55
(1)若该商行进贷款为1万元,则两种水果各购进多少箱?
(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的 1 3 ,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?
在"新冠"疫情期间,全国人民"众志成城,同心抗疫",某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元 / 件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量 y (单位:件)与线下售价 x (单位:元 / 件, 12 ⩽ x < 24 ) 满足一次函数的关系,部分数据如下表:
x (元 / 件)
12
13
14
15
16
y (件 )
1200
1100
1000
900
800
(1)求 y 与 x 的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当 x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
如图,在 ΔABC 的边 BC 上取一点 O ,以 O 为圆心, OC 为半径画 ⊙ O , ⊙ O 与边 AB 相切于点 D , AC = AD ,连接 OA 交 ⊙ O 于点 E ,连接 CE ,并延长交线段 AB 于点 F .
(1)求证: AC 是 ⊙ O 的切线;
(2)若 AB = 10 , tan B = 4 3 ,求 ⊙ O 的半径;
(3)若 F 是 AB 的中点,试探究 BD + CE 与 AF 的数量关系并说明理由.
在平面直角坐标系 xOy 中,反比例函数 y = m x ( x > 0 ) 的图象经过点 A ( 3 , 4 ) ,过点 A 的直线 y = kx + b 与 x 轴、 y 轴分别交于 B , C 两点.
(1)求反比例函数的表达式;
(2)若 ΔAOB 的面积为 ΔBOC 的面积的2倍,求此直线的函数表达式.
成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项 D 处测得塔 A 处的仰角为 45 ° ,塔底部 B 处的俯角为 22 ° .已知建筑物的高 CD 约为61米,请计算观景台的高 AB 的值.
(结果精确到1米;参考数据: sin 22 ° ≈ 0 . 37 , cos 22 ° ≈ 0 . 93 , tan 22 ° ≈ 0 . 40 )
2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)这次被调查的同学共有 人;
(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;
(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.