已知某厂以 t 小时 / 千克的速度匀速生产某种产品(生产条件要求 0 . 1 < t ⩽ 1 ) ,且每小时可获得利润 60 ( - 3 t + 5 t + 1 ) 元.
(1)某人将每小时获得的利润设为 y 元,发现 t = 1 时, y = 180 ,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行解析说明;
(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;
(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.
(本题满分7分) 如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点C(0,-5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标。(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连结OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.
(1)如图①两个正方形的边长均为3,求三角形DBF的面积.(2)如图②,正方形ABCD的边长为3,正方形CEFG的边长为1, 求三角形DBF的面积. (3)如图③,正方形ABCD的边长为a,正方形CEFG的边长为,求三角形DBF的面积. 从上面计算中你能得到什么结论. 结论是:(没写结论也不扣分)
如图,已知二次函数y = x-4x + 3的图象交x轴于A、B两点(点A在点B的左侧)抛物线y = x-4x + 3交y轴于点C,(1)求线段BC所在直线的解析式.(2)又已知反比例函数与BC有两个交点且k为正整数,求的值.
某校九年级两个班各为红十字会捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.
如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形.