如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形.
(1)解不等式组(2)解方程:
(1)计算:(2)
如图,抛物线交坐标轴于A、B、D三点,过点D作轴的平行线交抛物线于点C.直线l过点E(0,-),且平分梯形ABCD面积.⑴ 直接写出A、B、D三点的坐标;⑵ 直接写出直线l的解析式;⑶ 若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.
△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.⑴ 求cosA的值.⑵ 当以MN为直径的圆与△ABC一边相切时,求t的值.
阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:⑴ 现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.在图3中画出示意图,标注字母,指明拼接而成的平行四边形;⑵ 如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).