如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是方程x2-7x-18=0的一个根,OB=12OA.请答案下列问题:
(1)求点A,B的坐标;
(2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反比例函数y=kx图象的一支经过点C,求k的值;
(3)在(2)的条件下,过点C作CD⊥OE,垂足为D,点M在直线AB上,点N在直线CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E。求证:∠B=∠D.
阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为︱a-b︱。 根据阅读材料与你的理解回答下列问题: (1)数轴上表示3与-2的两点之间的距离是。 (2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为。 (3)代数式︱x+8︱可以表示数轴上有理数x与有理数所对应的两点之间的距离;若︱x+8︱=5,则x=。 (4)求代数式︱x+1008︱+︱x+504︱+︱x-1007︱的最小值。
一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周。(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=πR3,V圆锥=πr2h)。 (1)如果绕着它的斜边所在的直线旋转一周形成的几何体是。 (2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少? (3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?
,甲、乙两人分别后,沿着铁路反向而行。此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s。已知两人的步行速度都是3.6km/h。(1)这列火车有多长?(2)当火车从乙身旁经过后,此时甲乙两人之间的距离是多少m?
, (1)化简: (2)先化简,再求值:2(a2b+3ab2)-3(ab2-1)-2a2b-2,其中a=-2,b=2。