以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了 m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题.
(1) m = , n = .
(2)请补全条形统计图;
(3)在扇形统计图中,"软件"所对应的扇形的圆心角是 度;
(4)若该公司新招聘600名毕业生,请你估计"总线"专业的毕业生有 名.
"互联网 + "时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为 x 元 ( x 为正整数),每月的销售量为 y 条.
(1)直接写出 y 与 x 的函数关系式;
(2)设该网店每月获得的利润为 w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
如图, PA 是 ⊙ O 的切线,切点为 A , AC 是 ⊙ O 的直径,连接 OP 交 ⊙ O 于 E .过 A 点作 AB ⊥ PO 于点 D ,交 ⊙ O 于 B ,连接 BC , PB .
(1)求证: PB 是 ⊙ O 的切线;
(2)求证: E 为 ΔPAB 的内心;
(3)若 cos ∠ PAB = 10 10 , BC = 1 ,求 PO 的长.
为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度 AB ,他站在距离教学楼底部 E 处6米远的地面 C 处,测得宣传牌的底部 B 的仰角为 60° ,同时测得教学楼窗户 D 处的仰角为 30°(A 、 B 、 D 、 E 在同一直线上).然后,小明沿坡度 i=1:1.5 的斜坡从 C 走到 F 处,此时 DF 正好与地面 CE 平行.
(1)求点 F 到直线 CE 的距离(结果保留根号);
(2)若小明在 F 处又测得宣传牌顶部 A 的仰角为 45° ,求宣传牌的高度 AB (结果精确到0.1米, 2 ≈1.41 , 3 ≈1.73) .
已知关于 x 的方程 x 2 - 2 x + 2 k - 1 = 0 有实数根.
(1)求 k 的取值范围;
(2)设方程的两根分别是 x 1 、 x 2 ,且 x 2 x 1 + x 1 x 2 = x 1 · x 2 ,试求 k 的值.
某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
类型
新闻
体育
动画
娱乐
戏曲
人数
11
20
40
m
4
请你根据以上信息,回答下列问题:
(1)统计表中 m 的值为 ,统计图中 n 的值为 , A 类对应扇形的圆心角为 度;
(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;
(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.