"分母有理化"是我们常用的一种化简的方法,如: 2 + 3 2 - 3 = ( 2 + 3 ) ( 2 + 3 ) ( 2 - 3 ) ( 2 + 3 ) = 7 + 4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于 3 + 5 - 3 - 5 ,设 x = 3 + 5 - 3 - 5 ,易知 3 + 5 > 3 - 5 ,故 x > 0 ,由 x 2 = ( 3 + 5 - 3 - 5 ) 2 = 3 + 5 + 3 - 5 - 2 ( 3 + 5 ) ( 3 - 5 ) = 2 ,解得 x = 2 ,即 3 + 5 - 3 - 5 = 2 .根据以上方法,化简 3 - 2 3 + 2 + 6 - 3 3 - 6 + 3 3 后的结果为 ( )
5 + 3 6
5 + 6
5 - 6
5 - 3 6
如图所示,该几何体的主视图是()
右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
下列四个图形中,既是轴对称图形又是中心对称图形的是().
如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为() A.(﹣1,)B.(﹣2,) C.(,1)D.(,2)
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()