在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;
(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;
(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=2AM.
在平面直角坐标系中,已知点A(-4,3)、B(-2,-3) (1)描出A、B两点的位置,并连结AB、AO、BO。 (2)△AOB的面积是__________。 把△AOB向右平移4个单位,再向上平移2个单位,画出平移后的△A′B′C′,并写出各点的坐标。
已知:如图,AD∥BC,∠1=∠2。求证:∠3+∠4=180°。
解不等式组并写出它的整数解
如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点. (1)求抛物线的解析式; (2)判断△MAB的形状,并说明理由; (3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.