如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将ΔABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P
(1)求证:BC是⊙O的切线;
(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.
观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.
出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?
如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.
某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10,+4,+9.求他们的平均成绩.
某天,小明和小亮利用温差法测量紫金山一个山峰的高度,小明测得山顶温度为﹣1.1℃,同时,小亮测得山脚温度是1.6℃,已知该地区高度每增加100m,气温大约降低0.6℃.(1)山脚比山顶高了多少度?(2)这个山峰的高度大约是多少米?