如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).
(1)求直线l1的解析式;
(2)求四边形PAOC的面积.
某林场计划从外地购进两种小树苗2000棵进行栽培,已知甲种树苗每棵2元,乙种树苗每棵3元。 (1)若购买这批树苗共用4500元,求甲、乙两种树苗各购买了多少棵? (2)若购买这批树苗的钱不超过4700元,问应选购甲种树苗至少多少棵? (3)相关资料表明,甲、乙两种树苗的成活率分别是94%和99%,若要使这批树苗的成活率不低于96%,且树苗的总费用最少,问应选购甲、乙两种树苗各多少棵?总费用最少是多少元?
肯德基员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元. (1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱? (2)若有顾客同时购买汉堡包和橙汁且购买费恰好为20元,问汉堡店该如何配送?
已知,如图, DE⊥AC, ∠AGF=∠ABC, ∠1+∠2=1800,试判断BF与AC的位置关系, 并说明理由.
小龙在学校组织的社会调查活动中负责了解他所居住的小区500户居民的家庭收入情况。他从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图。 根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少户?
(7分) 如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P()是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,已知点P的对应点为P1(). (1)直接写出点C1的坐标; (2)在图中画出△A1B1C1; (3)求△AOA1的面积.