“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;求图②中表示家长“无所谓”的圆心角的度数;从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少
如图,一次函数 y = mx + b 的图象与反比例函数 y = k x 的图象交于 A ( 3 , 1 ) , B ( − 1 2 , n ) 两点.
(1)求该反比例函数的解析式;
(2)求 n 的值及该一次函数的解析式.
如图,四边形 ABCD 是菱形,对角线 AC , BD 相交于点 O ,且 AB = 2 .
(1)求菱形 ABCD 的周长;
(2)若 AC = 2 ,求 BD 的长.
一位同学进行五次投实心球的练习,每次投出的成绩如表:
投实心球序次
1
2
3
4
5
成绩 ( m )
10.5
10.2
10.3
10.6
10.4
求该同学这五次投实心球的平均成绩.
如图, AE 和 BD 相交于点 C , ∠ A = ∠ E , AC = EC .求证: ΔABC ≅ ΔEDC .
如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 交 x 轴于 A 、 B 两点 ( A 在 B 的左侧),且 OA = 3 , OB = 1 ,与 y 轴交于 C ( 0 , 3 ) ,抛物线的顶点坐标为 D ( − 1 , 4 ) .
(1)求 A 、 B 两点的坐标;
(2)求抛物线的解析式;
(3)过点 D 作直线 DE / / y 轴,交 x 轴于点 E ,点 P 是抛物线上 B 、 D 两点间的一个动点(点 P 不与 B 、 D 两点重合), PA 、 PB 与直线 DE 分别交于点 F 、 G ,当点 P 运动时, EF + EG 是否为定值?若是,试求出该定值;若不是,请说明理由.