如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.
(1)求y关于x的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
如图,矩形ABCD中,AP平分∠DAB,且AP⊥DP于点P,联结CP,如果AB﹦8,AD﹦4,求sin∠DCP的值.
已知二次函数. (1)把这个二次函数化成的形式; (2)画出这个二次函数的图象,并利用图象写出当x为何值时,.
如图,已知抛物线与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C(0,-3),其顶点为D,对称轴为直线. (1)求抛物线的解析式; (2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标; (3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG与△BCD重叠部分的面积记为S,用含m的代数式表示S.
在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P. (1)如图1,若四边形ABCD是正方形. ①求证:△AOC1≌△BOD1. ②请直接写出AC1与BD1的位置关系. (2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值. (3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和的值.
已知二次函数(为常数,且)的图象过点A(0,1),B(1,-2)和点C(-1,6). (1)求二次函数表达式; (2)若,比较与的大小; (3)将抛物线平移,平移后图象的顶点为,若平移后的抛物线与直线有且只有一个公共点,请用含的代数式表示.