将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.
【原创题】(1)计算:-()-1- (2)先化简,再求值:。其中x=
已知如图,是△的边上一点,∥,交边于点,延长至点,使,联结,交边于点,联结 (1)求证:; (2)如果,求证:
如图,在平行四边形ABCD中,对角线AC、BD交于点O,M为AD中点,连接CM交BD于点N,且ON=1。 (1)求BD的长 (2)若△DCN的面积为2,求四边形ABNM的面积。
某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
若日销售量y是销售价x的一次函数. (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? (3)为了扩大销售量,经理决定每日销售的利润降到200元,每件产品的销售价应定为多少元?
【改编】如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD. (1)求证:△ACD∽△ABC; (2)若AD=3,AB=7,求AC的长.