某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).
(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.
(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)
(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,3≈1.73)
如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,BP=3(单位:km)有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求A、B两个观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考查,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°的方向,求小船沿途考察的时间.(结果有根号的保留根号)
某大学举办教工男子篮球赛,由大学各个院系教工组成A、B、C、D、E五个代表队,由大学附属单位组成F、G、H三个代表队.通过抽签分组,比赛共分上下两个半区,上半区有A、D、E、G四个代表队,下半区有B、C、F、H四个代表队.若从上下半区各随机抽取一个代表队进行首场比赛,请列表或画树状图写出所有可能的结果,并计算首场比赛的两个代表队都是大学附属单位代表队的概率.
如图,已知△ABC,用尺规作出△ABC的一条中位线.(保留作图痕迹,不写作法)
用适当的方法解方程.(1)4x2-x-1=3x-2(2)2y2+7y-3=0.
(12分) 已知⊙O的半径为2,∠AOB=120°。 (1)点O到弦AB的距离为 . (2)若点P为优弧AB上一动点(点P不与A、B重合),设∠ABP=α,将△ABP沿BP折叠,得到A点的对称点为A'; ①若∠α=30°,试判断点A'与⊙O的位置关系; ②若BA'与⊙O相切于B点,求BP的长; ③若线段BA'与优弧APB只有一个公共点,直接写出α的取值范围.