重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;
(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
【改编题】(本题14分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)求证:OE=OF; (2)若CE=8,CF=6,求OC的长; (3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. (4)在(3)的条件下,△ABC再满足什么条件,矩形AECF为正方形?
【改编题】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; (2)若CD=,求△ABC的面积.
8分,观察下列各式及其验证过程: 验证:. 验证: (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.
如图,在□ABCD中,E,F分别为边AB和CD的中点,连接DE,BF,且AB=2AD=4. (1)求证:△AED≌△CFB; (2)当四边形DEBF为菱形时,求出该菱形的面积;
如图,ABCD中,点E、F在BD上,且BF=DE. (1)写出图中所有你认为全等的三角形; (2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.