近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 108 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
解不等式<1,并把它的解集在数轴上表示出来.
如图,在平面直角坐标系xOy中,点A(,0),点B(0,2),点C是线段OA的中点.(1)点P是直线AB上的一个动点,当PC+PO的值最小时,①画出符合要求的点P(保留作图痕迹);②求出点P的坐标及PC+PO的最小值;(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.
在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB上.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是 ;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是 ;,(3)若∠ACB=∠ADE=2α(0°< α < 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE的数量关系,并加以证明(用含α的式子表示).
已知关于x的一元二次方程 .(1)如果该方程有两个不相等的实数根,求m的取值范围; (2)在(1)的条件下,当关于x的抛物线与x轴交点的横坐标都是整数,且时,求m的整数值.
以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a,宽为b,则a的长度为 ;(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)